Стекло против кристалла. выбираем монитор - лучшее оборудование

Изготовители электронно-лучевых трубок еще не исчерпали своего потенциала и словно только пробуют силы, держа в руках давно испытанный, но по-прежнему дорогостоящий компонент, технологический прогресс которого идет болезненно медленно на фоне стремительно развивающихся новинок. Профессиональные мониторы становятся дешевле, и этот факт, несомненно, очень радует пользователей, нуждающихся в высоком качестве картинки на экране. Если раньше они предпочитали только мониторы brand name (от Sony или ViewSonic) - хорошие, конечно, но довольно дорогие, то теперь на рынке появляется все больше моделей, обладающих порой даже более высокими характеристиками и к тому же позволяющих сэкономить ощутимую сумму.

Как устроена электронно-лучевая трубка

Электронно-лучевая трубка (ЭЛТ; Cathode Ray Tube, или CRT) - это традиционная технология формирования изображения на «дне» герметично запечатанной стеклянной «бутылки». Мониторы получают сигнал от компьютера и преобразуют его в форму, воспринимаемую электронно-лучевой пушкой, расположенной в «горлышке» огромной колбы. Пушка «стреляет» в нашу сторону, а широкое дно (куда мы, собственно, и смотрим) состоит из «теневой маски» и люминесцентного покрытия, на котором создается изображение. Электромагнитные поля управляют пучком электронов: отклоняющая система изменяет направление потока частиц таким образом, что они достигают нужного места на экране, проходя через теневую маску, падают на фосфоресцирующую поверхность и формируют изображение (активизированный электронным лучом участок экрана испускает свет, видимый глазом; рис.1). Такая технология называется «эмиссионной».Экран монитора представляет собой матрицу, состоящую из гнезд-триад, определенной структуры и формы (зависящей от конкретной технологии изготовления - см. далее). Каждое такое гнездо состоит из трех элементов (точек, полос или других структур), формирующих RGB-триаду, в которой основные цвета располагаются настолько близко друг к другу, что отдельные элементы неразличимы для глаза.

Таким образом, электронно-лучевые трубки, используемые в современных мониторах, имеют следующие основные элементы:

  • электронные пушки (по одной на каждый цвет RGB-триады или одну, но испускающую три пучка);
  • отклоняющую систему, то есть набор электронных «линз», формирующих пучок электронов;
  • теневую маску, обеспечивающую точное попадание электронов от пушки каждого цвета в «свои» точки экрана;
  • слой люминофора, формирующий изображение при попадании электронов в точку соответствующего цвета.

С этими элементами и связана непрерывная борьба производителей за качество изображения.

Электронная пушка состоит из подогревателя, катода, испускающего поток электронов, и модулятора, ускоряющего и фокусирующего электроны.

В современных кинескопах применяются оксидные катоды, в которых электроны испускаются эмиссионным покрытием из редкоземельных элементов, нанесенным на никелевый колпачок с расположенной внутри него нитью накала. Подогреватель обеспечивает нагревание катода до температуры 850-880 °C, при которой и происходит испускание (эмиссия) электронов с поверхности катода. Остальные электроды трубки используются для ускорения и формирования пучка электронов.

Соответственно каждая из трех электронных пушек создает пучок электронов для формирования своего цвета. При этом различают ЭЛТ с дельтовидным и планарным расположением пушек.

В случае дельтовидного расположения электронные пушки размещаются в вершинах равностороннего треугольника под углом 1° к оси кинескопа.

Ошибка в значении угла наклона не должна превышать 1’. Наклон пушек выбирается таким образом, чтобы электронные лучи пересекались в некоторой точке (точке схождения) и дальше, расходясь на определенный угол, образовывали на маске небольшой круг, в пределах которого одновременно может находиться только одно отверстие теневой маски и одна RGB-триада (три точки люминофора основных цветов). Соответственно точки люминофора при этом также располагают по вершинам равностороннего треугольника, образующего эту триаду. Центр каждого отверстия в теневой маске расположен напротив оси симметрии данной триады точек люминофора.

Электронные лучи, расходясь после теневой маски, попадают на точки люминофора соответствующего цвета и заставляют их светиться.

Теневая маска

Электронный луч достигает экрана, пройдя через теневую маску, которая может иметь различную (точечную или линейную) структуру. Теневая маска, выполненная из тонкого сплава, направляет электронный луч на флуоресцирующий материал определенного цвета.

При этом маска задерживает 70-85% всех электронов, испускаемых катодами, в результате чего она нагревается до высокой температуры.

Раньше маски изготавливали из сплавов на основе железа, и при сильном нагревании они деформировались, в результате чего отверстия смещались относительно триад люминофора. Для компенсации смещений маска крепилась к экрану при помощи системы «замков» из материала со специально подобранным коэффициентом температурного расширения; при нагревании эти «замки» перемещали маску вдоль оси ЭЛТ в сторону экрана.

В современных моделях применяется теневая маска из инвара - специального сплава с оченьнебольшим коэффициентом температурного расширения, поэтому смещение масок при нагреве остается минимальным.

В кинескопах с планарным расположением пушек используются щелевые маски, а люминофор трех основных цветов наносится на экран в виде вертикальных чередующихся полосок таким образом, чтобы одному щелевидному отверстию соответствовала своя RGB-триада. В таких ЭЛТ все три электронные пушки соосны друг другу, расположены в одной вертикальной плоскости и наклонены под небольшим углом к горизонтальной плоскости. Такое расположение в значительной мере позволяет скомпенсировать воздействие на пучки электронов магнитного поля Земли и упростить сведение лучей.

Расходясь после точки схождения, лучи образуют эллипс, охватывающий одновременно только одно отверстие щелевой маски и соответственно три находящиеся за ней полоски люминофора. Отверстие щелевой маски находится напротив средней (зеленой) полоски люминофора.

Отношение площади отверстий к общей площади маски в электронно-лучевых трубках такого типа значительно выше, чем у теневой маски, поэтому та же яркость свечения может быть достигнута при значительно меньшей мощности электронных пучков и, следовательно, срок службы таких кинескопов существенно больше.

Экран монитора

По достижении поверхности экрана луч взаимодействует с ним, при этом энергия электронов преобразуется в световую. Экран представляет собой обладающую особыми оптическими свойствами стеклянную поверхность, на которой распылен специальный фосфоресцирующий материал. Высокое качество изображения достигается правильным выбором материалов и технологии. Фосфоресцирующий материал должен обеспечивать требуемую энергетическую эффективность, разрешающую способность, долговечность, точную цветопередачу и послесвечение.

Антибликовая панель (AR panel)

Для минимизации отражающих свойств экрана используются специальные антибликовые панели. Не ухудшая изображения, они ослабляют блики, а также уменьшают электромагнитное излучение монитора. Однако, ввиду высокой стоимости таких панелей, они используются в дорогих мониторах с большим разрешением, например в 21-дюймовых. В последнее время вместо антибликовой панели на мониторах с диагональю 21 дюйм и меньше используют антибликовое покрытие. Такое покрытие, как и панели, ограничивает излучение в соответствии со стандартами ТСО. Новые технологии позволяют перейти к коммерческому использованию мониторов с антибликовым покрытием.

Антистатическое покрытие

Антистатическое покрытие экрана обеспечивается с помощью напыления специального химического состава для предотвращения накопления электростатического заряда. Оно требуется в соответствии с рядом стандартов по безопасности и эргономике, в том числе MPR II.

Светопередача монитора

Отношение полезной световой энергии, прошедшей через переднее стекло монитора, к излученной внутренним фосфоресцирующим слоем называется коэффициентом светопередачи. Как правило, чем темнее выглядит экран при выключенном мониторе, тем ниже этот коэффициент. При высоком коэффициенте светопередачи для обеспечения требуемой яркости изображения требуется небольшой уровень видеосигнала и упрощаются схемотехнические решения. Однако при этом уменьшается перепад между излучающими участками и соседними, что влечет за собой ухудшение четкости и снижение контрастности изображения и, как следствие, - ухудшение его общего качества. В свою очередь, при низком коэффициенте светопередачи улучшаются фокусировка изображения и качество цвета, однако для получения достаточной яркости требуется мощный видеосигнал и усложняется схема монитора. Обычно 17-дюймовые мониторы имеют коэффициент светопередачи 52-53%, а 15-дюймовые - 56-58%, хотя в зависимости от конкретно выбранной модели эти значения могут варьироваться. Поэтому при необходимости определения точного значения коэффициента светопередачи следует обращаться к документации производителя.

Горизонтальная развертка

Время горизонтального перемещения луча от левого до правого края экрана называется периодом горизонтальной развертки. Величина, обратно пропорциональная этому периоду, называется частотой горизонтальной развертки, или просто горизонтальной разверткой (иногда встречаются названия «частота строчной развертки», или «строчная частота»), и измеряется в килогерцах (кГц). Например, для монитора с разрешением 1024 x 768 пикселов горизонтальная развертка обратно пропорциональна времени, за которое луч сканирует 1024 пиксела. При увеличении разрешающей способности за тот же период времени лучом должно быть отсканировано большее число пикселов. При увеличении частоты кадров частота горизонтальной развертки также должна быть увеличена.

Вертикальная развертка, или частота кадров

Монитор с электронно-лучевой трубкой обновляет изображение на экране десятки раз в секунду. Это число называется частотой вертикальной развертки, или частотой обновления экрана, и измеряется в герцах (Гц).

Монитор с вертикальной разверткой 60 Гц имеет такую частоту мерцания, как лампа дневного света в США (несколько выше, чем в Европе, где частота сети 50 Гц). Обычно при частотах выше 75 Гц мерцание незаметно для глаза (режим без мерцания). Стандарт VESA рекомендует работу на частоте 85 Гц, считая это важным потребительским показателем эргономичности монитора.

Расчет частоты горизонтальной развертки исходя из частоты кадров: Горизонтальная развертка = (число строк) x (вертикальная развертка) x 1,05. Например, требуемая горизонтальная развертка при вертикальной частоте 85 Гц и разрешении 1024 x 768 составляет: 768 x 85 x 1,05 = 68 500 Гц = = 68,5 кГц.

Разрешение

Разрешающая способность характеризует качество воспроизведения изображения монитором. Для получения высокого разрешения в первую очередьвысококачественным должен быть видеосигнал. Электронные цепи должны обработать его таким образом, чтобы обеспечить правильные уровни и сочетания фокусировки, цвета, яркости и контраста. Разрешающая способность характеризуется числом точек, или пикселов (dot) на число строк (line). Например, разрешение монитора 1024 x 768 означает возможность различить до 1024 точек по горизонтали при числе строк до 768.

Частота пикселов

Например, если горизонтальное разрешение 820 точек, а период отображения данных по горизонтали 10,85 нс = 10,85 x 10-6 с, то требуется частота пикселов (pixel rate) примерно 76 МГц. Монитор с высоким разрешением может выводить на экран в 24 раза больше информации, нежели телевизор.

Контраст, равномерность

Контраст характеризует яркость экрана по сравнению с темной зоной в отсутствие видеосигнала. Контраст можно настроить регулировкой «Усиление», воздействуя на входной видеосигнал.

Под равномерностью понимается постоянство уровня яркости по всей поверхности экрана монитора, которое обеспечивает пользователю комфортные условия для работы. Временная неравномерность цвета может быть устранена размагничиванием экрана. Принято различать «равномерность распределения яркости» и «равномерность белого».

Сведение: статическое, динамическое

Для получения четкого изображения и чистых цветов на экране монитора красный, зеленый и синий лучи, исходящие из всех трех электронных пушек, должны попадать в точно заданное место на экране. Термин «несведение лучей» означает отклонение красного и синего от центрирующего зеленого.

Под статическим несведением понимается несведение трех цветов (RGB), одинаковое на всей поверхности экрана, вызванное незначительной погрешностью при сборке электронной пушки. Изображение на экране может быть откорректировано регулировкой статического сведения.

В то время как в центре экрана монитора изображение остается четким, на его краях может проявиться несведение. Оно вызывается ошибками в обмотках или при их установке и может быть устранено с помощью магнитных пластин.

Динамическая фокусировка

Электронный луч, если не предприняты специальные меры, расфокусируется (увеличивается в диаметре) по мере удаления его от центра экрана. Для компенсации искажения формируется специальный компенсирующий сигнал. Величина компенсирующего сигнала зависит от свойств ЭЛТ и ее отклоняющей системы. Чтобы устранить смещение фокуса, вызванное различием в путях пробега луча (расстоянии) от электронно-лучевой пушки до центра и до краев экрана, требуется увеличивать напряжение с ростом отклонения луча от центра с помощью высоковольтного трансформатора, как показано на рис. 4.

Чистота изображения

Чистота и четкость изображения достигается, когда каждый из электронных лучей RGB падает на поверхность экрана в строго определенной точке. Отсюда следует, что требуется выверенная взаимосвязь между электронной пушкой, отверстиями теневой маски и точками фосфоресцирующей поверхности (люминофора) экрана. Нарушение чистоты и четкости изображения могут быть обусловлены следующими причинами:

  • наклоном электронной пушки или смещением луча;
  • смещением центра пушки вперед или назад;
  • отклонением луча, вызванным влиянием внешних магнитных полей, включая магнитное поле Земли.

Мерцание

Монитору свойственно мерцание. Оно связано с тем, что по истечении определенного времени происходит ослабление излучения света фосфором. Чтобы поддерживать свечение, экран должен быть подвержен периодическому воздействию луча от электронно-лучевой трубки. Мерцание становится заметным, если интервал времени между воздействиями слишком велик или недостаточно время послесвечения фосфоресцирующего вещества экрана.

Эффект мерцания может также усугубляться ярким экраном и большим углом зрения к нему. Устранению мерцания как проблеме эргономики в последнее время уделяется все больше внимания - мерцание экрана, таким образом, становится ключевым коммерческим показателем товара. Уменьшение мерцания достигается увеличением частоты регенерации (обновления) экрана на каждом уровне разрешения. Стандарт VESA рекомендует использовать частоту не менее 85 Гц.

Дрожание (Jitter)

Дрожание изображения возникает вследствие высокочастотных вибраций отверстий маски монитора, вызванных как взаимовлиянием сети, сигналов видео, смещения, блока управления микропроцессорными цепями, так и неправильной организацией заземления. Термин «дрожание» относится к колебаниям с частотами выше 30 Гц. При частотах от 1 до 30 Гц чаще употребляют термин «плавание», а ниже 1 Гц - «дрейф». Дрожание в той или иной степени свойственно всем мониторам. Хотя незначительное дрожание может остаться для пользователя незаметным, оно все же вызывает утомление глаз и должно быть отрегулировано. В части 3 ISO 9241 (Предписания по эргономике) допускается диагональное отклонение точки не более 0,1 мм.

Классификация мониторов по типу маски

Современные мониторы с любой маской имеют практически плоскую форму экрана, благодаря которой существенно снижаются искажения геометрии, особенно по углам. Поэтому тип маски по форме экрана определить не так просто.

На сегодняшний день в ЭЛТ-дисплеях используются три основные технологии формирования матриц и масок для RGB-триад:

  • трехточечная теневая маска (DOT-TRIO SHADOW-MASK CRT);
  • щелевая апертурная решетка (APERTURE-GRILLE CRT);
  • гнездовая маска (SLOT-MASK CRT).
Тип маски можно определить, посмотрев на экран в 10-20-кратную лупу. Однако при создании мониторов помимо масок используются различные отклоняющие системы и другая электроника. Хотя сам экран и является наиболее важным фактором, определяющим эксплуатационные параметры дисплея, отклоняющая система и видеоусилитель также играют важную роль. Поэтому не следует думать, что при использовании одного и того же типа матрицы изготовители получают мониторы с одинаковыми параметрами.

Изготовители различных моделей говорят о больших преимуществах именно своей технологии, но тот факт, что на рынке предлагается несколько моделей и, кроме того, многие производители мониторов выпускают модели с различными типами матриц, показывает, что однозначного выбора не бывает. Предпочтения определяются только вкусами пользователя и его задачами.

ЭЛТ-мониторы с трехточечной теневой маской

Наиболее старая и широко используемая технология с так называемой теневой маской использует перфорированную металлическую пластину, помещаемую перед люминофором. Она маскирует три отдельных луча, каждый из которых управляется собственной электронной пушкой. Маскирование обеспечивает необходимую концентрацию каждого луча и обеспечивает его попадание только на нужный цветовой участок люминофора. Однако практика показывает, что ни один из мониторов не обеспечивает идеального выполнения этой задачи по всей поверхности экрана.

Ранние ЭЛТ-дисплеи с теневой маской имели выраженную криволинейную (сферическую) поверхность. Это позволяло добиваться лучшей фокусировки и уменьшало нежелательные эффекты и отклонения, вызываемые нагревом. В настоящее время большинство профессиональных и специализированных мониторов имеет практически плоский прямоугольный экран (типа FST).

Мониторы с теневой маской имеют свои преимущества:

  • текст выглядит лучше (особенно при малом размере точек);
  • цвета «натуральнее» и точнее (что особенно важно для компьютерной графики и в полиграфии);
  • отлаженная технология обеспечивает лучшее соотношение стоимости и эксплуатационных качеств.

Из недостатков можно отметить меньшую яркость таких мониторов, недостаточную контрастность изображения и более короткий срок службы, по сравнению с другими типами дисплеев.

ЭЛТ-мониторы с щелевой апертурной решеткой

Новую технологию изготовления CRT-дисплеев - с апертурной решеткой вместо традиционной точечной маски - впервые предложила фирма Sony, выпустив мониторы с трубкой Trinitron. В электронных пушках этих трубок используются динамические квадрупольные магнитные линзы, позволяющие формировать очень тонкий и точно направленный пучок электронов.

Благодаря такому решению значительно снижается астигматизм - рассеивание электронного пучка, приводящее к недостаточной резкости и контрастности изображения (особенно по горизонтали). Но главное отличие от технологии с теневой маской здесь состоит в том, что вместо металлической пластины с круглыми отверстиями, выполняющей функции маски, здесь используется вертикальная проволочная сетка (апертурная решетка) и люминофор наносится не в виде точек, а в виде вертикальных полос.

Мониторы с апертурной решеткой имеют следующие преимущества:

  • в тонкой сетке меньше металла, что позволяет использовать больше энергии электронов на реакцию с люминофором, а значит, меньше рассеивается на решетке и уходит в тепло;
  • увеличенная площадь покрытия люминофором позволяет повысить яркость излучения при той же интенсивности пучка электронов;
  • в связи со значительным общим повышением яркости можно использовать более темное стекло и получать на экране более контрастное изображение;
  • экран монитора с апертурной решеткой более плоский, чем у дисплеев с теневой маской, а в последних моделях даже не цилиндрический, как раньше, а почти абсолютно ровный, что гораздо удобнее в работе и уменьшает количество бликов и отражений.

Из недостатков можно отметить только «неприятные» горизонтальные нити - ограничители, используемые в таких мониторах для придания проволочной сетке дополнительной жесткости. Хотя проволочки в апертурной решетке туго натянуты, в процессе работы они могут вибрировать под воздействием пучков электронов. Демпферная нить (а в экранах больших размеров - две нити) служит для ослабления колебаний и гашения вибрации. По этим нитям мониторы с трубкой Trinitron можно отличить от других моделей. Кроме того, если в процессе работы такого монитора его слегка качнуть, колебания изображения будут видны даже невооруженным глазом. Именно поэтому мониторы с этими трубками не рекомендуется ставить на системные блоки типа desktop.

Остается добавить, что в электронно-лучевых трубках Sony Trinitron используется система трех пучков электронов, излучаемых одной пушкой, а в трубках с подобной апертурной решеткой компании Mitsubishi - Diamondtron - система из трех лучей с тремя пушками.

ЭЛТ-мониторы с гнездовой маской

И, наконец, последний, комбинированный тип электронно-лучевой трубки, так называемый CromaСlear/OptiClear (впервые предложенный фирмой NEC) - это вариант теневой маски, в которой используются не круглые отверстия, а щели, как в апертурной решетке, только короткие - «пунктиром», и люминофор наносится в виде таких же эллиптических полосок, а полученные таким образом гнезда для большей равномерности расположены в «шахматном» порядке.

Такая гибридная технология позволяет сочетать все преимущества вышеописанных типов при отсутствии их недостатков. Четкий и ясный текст, натуральные, но достаточно яркие цвета и высокая контрастность изображения неизменно привлекают к этим мониторам все группы пользователей.

В статье использованы некоторые материалы с русскоязычного Web-сайта компании Samsung Electronics (http://www.samsung.ru).

КомпьютерПресс 5"2000

Последние несколько лет, желавшие приобрести монитор для офисного или домашнего компьютера, находились на распутье — что выбрать ЖК- или ЭЛТ-монитор? Пользователи долгое время отдавали предпочтение ЭЛТ-устройствам, чему немало способствовал «эффект размазывания» изображения на ЖК-экране. Но проблема была решена, и в этом году ситуация кардинально изменилась. ЖК-дисплеи активно теснят своих ЭЛТ-собратьев на рынке мониторов и завоевывают сердца покупателей телевизоров. Компании-лидеры в цифровой обработке сигнала, основываясь на предпочтениях покупателей и тенденциях развития технологий и рынка, считают, что будущее именно за ЖК-панелями, которые впоследствии станут универсальными (телевизор и монитор в одном «пакете»).

У ЭЛТ-мониторов не осталось преимуществ

Доводов в пользу приобретения дисплея с традиционной электронно-лучевой трубкой (ЭЛТ) несколько лет назад было предостаточно — лучшая цветопередача, больший угол обзора, более высокая контрастность. К тому же, и цены на эти мониторы постоянно уменьшались.

Бывшие аутсайдеры выходят вперед

Если несколько лет назад за 15-дюймовый ЭЛТ-монитор приходилось выкладывать более $300, то сейчас за те же деньги можно приобрести хороший 19-дюймовый дисплей таких известных производителей (и не опасаться за качество), как Phillips, Samsung или ViewSonic.

Конечно, потребителя продолжают смущать разговоры (имеющие под собой вполне реальную почву) о повышенном электромагнитном излучении, наносящем непоправимый ущерб здоровью, а также чрезвычайная громоздкость покупки: ЭЛТ-дисплей может весить десятки килограмм и занимать существенную часть даже на обширном рабочем столе.

Поначалу доводов в защиту жидкокристаллического дисплея было совсем мало. Помимо отсутствия вредного для здоровья облучения, покупателя больше всего, конечно, привлекали его малые габариты.

ЖК-монитор скромно устраивается на краешке стола и оставляет достаточно места для других компьютерных аксессуаров, количество которых непрерывно увеличивается. Но по всем другим параметрам — яркости, контрастности, скорости отзыва, цветопередаче — ЖК-мониторы долгое время существенно уступали своим крупногабаритным и тяжелым «трубчатым» собратьям.

О перспективах ЖК-мониторов на российском и мировом рынке в своем интервью CNews.ru рассказал Дмитрий Кравченко, менеджер по компонентам и периферийному оборудованию Acer CIS Inc.

CNews.ru: Насколько динамично развивается российский рынок LCD-мониторов?
Можно с уверенностью утверждать, что рынок ЖК-мониторов в России развивается «взрывообразно». Частные компании и домашние пользователи практически прекратили закупки традиционных ЭЛТ-мониторов с новыми компьютерами в силу очевидных преимуществ ЖК-технологии над ЭЛТ. Кроме того, существует огромный рынок upgrade с ЭЛТ на ЖК.

CNews.ru: Насколько динамично развивается российский рынок ЖК-мониторов? Какие направления на российском рынке ЖК-мониторов можно назвать перспективными на ближайшие год-два?
Перспективными направлениями рынка мониторов для домашних и SOHO-пользователей можно считать традиционные и широкоформатные ЖК-мониторы с большой диагональю экрана и многообразием интерфейсов (аналоговый, DVI, AV), c быстродействующими, яркими и контрастными ЖК-панелями. Такие устройства готовы к медиаконвергенции и должны быть востребованы по этой причине. Для корпоративного рынка наиболее перспективными представляются 17-дюймовые традиционные ЖК-мониторы, т.к. они оптимальны по показателю возврата инвестиций (ROI), а также потому, что это тенденция европейского и мирового рынка и что российский не может остаться в стороне.

CNews.ru: Какова доля государственного сектора и частных компаний среди потребителей ЖК-дисплеев в России? Насколько ситуация на российском рынке отличается от той, что на восточно- и западноевропейском рынке?
Доля государственного сектора пока минимальна, но здесь также наметилась тенденция переключения спроса с ЭЛТ- на ЖК-технологию. Российский рынок ЖК-мониторов отстает от западноевропейского по причинам экономического характера, но с опозданием повторяет тенденции и закономерности европейского рынка.

CNews.ru: Как вы оцениваете перспективы развития российского рынка ноутбуков (они имеют ЖК-экран) в связи с тем, что ЖК-экраны постепенно дешевеют, а их качество за последний год-полтора значительно улучшилось?
Перспективы развития российского рынка ноутбуков оцениваю как самые радужные по упомянутым в вопросе причинам, а также потому, что основное преимущество ноутбуков по сравнению с настольными ПК - мобильность - в связи с этим становится доступным все более широким массам пользователей. Это должно привести к бурному росту рынка мобильных ПК. Ситуация будет подобна той, которая наблюдалась на рынке мобильной связи, когда мобильный телефон стал приемлемым по цене для многих.

CNews.ru: Какие изменения могут произойти на рынке ЖК-панелей в связи с активной экспансией новых моделей, где решена проблема «эффекта размазывания» изображения на ЖК-экране?
В дополнение к ответу, данному выше (см. вопрос 2 - CNews ), следует отметить, что все-таки 15-дюймовые ЖК-мониторы в течение некоторого времени останутся наиболее массовым сегментом на российском рынке ЖК-мониторов как наиболее привлекательные по цене.

CNews.ru: К каким изменениям в быту и в структуре рынке в целом приведет «сращивание» ЖК-мониторов и ЖК-TV?
До тех пор, пока ЖК-TV значительно дороже ЭЛТ-телевизоров с сопоставимой диагональю экрана, существенных изменений в структуре рынка бытовых телевизоров не произойдет. Вместе с тем, «сращивание» ЖК-мониторов и ЖК-TV должно привести к снижению стоимости ЖК-TV, так как канал сбыта ИТ-продукции более динамичен, чем канал сбыта бытовой техники. Также вышеупомянутое «сращивание» будет стимулировать рост рынка медиацентров на базе ПК.

CNews.ru: Спасибо.

Последние несколько лет не пропали даром. Ведущие мировые производители не стояли на месте и вели непрерывную работу по совершенствованию характеристик таких дисплеев, да и цена на них в последние год-полтора существенно снизилась. В результате, сейчас проблема выбора монитора предельно обострилась.

Впрочем, это относится не только к российским пользователям. Американские и европейские потребители долго не могли определиться со своими предпочтениями, и компании, занимающиеся исследованиями компьютерных рынков, внимательно следили за тем, какие тенденции возобладают.

Всего пару лет назад на долю ЖК-мониторов в Европе приходилось около 10% рынка. Эксперты полагали, что они еще не скоро смогут завоевать симпатии пользователей.

Однако в этом году довольно внезапно произошел перелом в настроении европейских потребителей — они решительно снизили объемы покупок ЭЛТ-дисплеев, благодаря чему объемы продаж ЖК-мониторов впервые превысили объемы продаж их собратьев с электронно-лучевой трубкой.

Чем хорош ЖК-монитор?

Ускоренный рост интереса к новому поколению дисплеев вызван несколькими факторами. Для корпоративного сектора важным обстоятельством является то, что ЖК-мониторы потребляют существенно меньше электроэнергии. Когда такие мониторы стоят на столах у сотен служащих, экономия для компании может быть довольно ощутимой.

Потребителя, покупающего монитор для домашнего использования, привлекает то, что, наконец-то, его можно комфортно использовать для 3D-игр. У большинства современных 15-дюймовых моделей время отклика теперь составляет 25 ms, что привело к исчезновению «эффекта размазывания» изображения на экране.

До 120-150 градусов увеличился угол обзора по горизонтали, а, значит, наблюдать за происходящим на экране может не только игрок, сидящий непосредственно напротив монитора. Кроме того, основное разрешение 15-дюймового ЖК-дисплея (1024 × 768) дает возможность играть как в старые игры, сделанные в разрешении 800×600, так и в практически любые новые игры.

Еще одним важным обстоятельством, определяющим выбор потребителя, является процесс конвергенции компьютерного монитора и телевизора. В продаже появляется все больше мониторов, которые имеют встроенный TV-тюнер, разъемы типа «скарт» или «тюльпан», пульт дистанционного управления.

Такое устройство перестает быть монофункциональной приставкой к компьютеру и обретает самостоятельную ценность, что делает его более желанным для всех членов семьи. В итоге, покупка жидкокристаллического дисплея становится все более оправданной, и фирмы-производители почувствовали эту тенденцию в увеличившихся объемах продаж.

Примечательно, что на прошедшей в этом году в Берлине выставке производителей бытовой техники Internationale Funk-ausstellung (IFA, собирается один раз в два года) ведущие производители телевизоров почти единогласно говорили о том, что будущее — за жидкокристаллическими технологиями. Так, по прогнозам исследовательской компании Display Search, в 2005 году в мире будет продано от 12 до 13 млн. телевизоров с жидкокристаллическими экранами.

Компании-лидеры в цифровой обработке сигнала (долгое время вкладывавшие в это направление деньги), сейчас интенсивно расширяют старые и открывают новые производства жидкокристаллических TV и мониторов (пока еще эти устройства позиционируют раздельно, как предназначенные для разных сегментов рынка). Например, компания Motorola после почти 30-летнего перерыва (она была пионером на американском рынке производства телевизоров и вышла из этого бизнеса в 1974 году) возобновляет производство TV, но теперь с жидкокристаллическим экраном .

ЖК-мониторы: продавцы и тенденции

В приведенной ниже диаграмме отражены объемы продаж 10 известных производителей дисплеев, которые смогли продать на европейском рынке во втором квартале 2003 г. более 100 тыс. единиц ЖК-мониторов каждый.

Первые три фирмы в этом списке — Dell, Samsung, HP — имеют практически равные объемы продаж, и каждая из них контролирует примерно по 10% рынка мониторов в Европе. Однако они, похоже, еще не окончательно определились с тем, какая продукция является для них приоритетной. В их случае объемы продаж ЖК-дисплеев достаточно ровно сбалансированы с объемами продаж ЭЛТ-мониторов. А вот занимающая четвертое место (по объемам продаж) фирма Acer явно сделала окончательный выбор в пользу новых технологий. 83% всех проданных ею в Европе мониторов являются жидкокристаллическими. Так же ожидается рост доли на этом рынке корпорации Sony, которая практически полностью сконцентрировала свои усилия на «внедрении» в нашу жизнь именно таких дисплеев — 93% из общего объема проданных ею мониторов были жидкокристаллическими.

На следующей диаграмме представлены фирмы, которые, как и уже названные Acer и Sony, сделали ставку на продажи ЖК-дисплеев.

(на европейском рынке в 2Q 2003 г.)

Источник: по материалам исследования британской компании Meko Ltd.

Вполне вероятно, что такая целенаправленная политика этих фирм обеспечит им в будущем определенное конкурентное преимущество и позволит расширить свое присутствие на рынках Европы и России.

Россия шагает в ногу?

А как же сейчас обстоят дела с продажей ЖК-мониторов в России? У нас отношение к зарубежным брендам несколько иное, и, например, мониторы Dell, которые лидируют по популярности в Европе, у нас, похоже, не пользуются такой известностью. Зато у нас весьма популярны дисплеи фирм Iiyama и ViewSonic, которые в Европе занимают 15-16 место по объемам продаж.

Вместе с тем, исследования показывают, что Россия и страны СНГ во многом следуют общеевропейским тенденциям. Объемы продаж LCD стабильно растут, и за 2-й квартал 2003 г. на постсоветском пространстве было продано почти 237 тыс. таких мониторов. По этому показателю мы уже опережаем страны Центральной Европы и вплотную приблизились к странам Северной Европы. Поэтому есть основания полагать, что скоро рабочие столы большинства наших пользователей также украсят безопасные и элегантные жидкокристаллические мониторы, и дилемма «что выбрать» уйдет в прошлое.

/ CNews.ru

Версия для печати

Комментарии

Статьи по теме

  • Обзор 4K-монитора Samsung U28D590D: битва компромиссов Совсем недавно DVD-диск был пределом мечтаний домашнего кинолюбителя. Потом произошёл переход на видео высокой чёткости – сначала 1280 на 720, а потом и 1920 на 1080. Но постоянный рост физических размеров экрана, а также желание требовательных...
  • Обзор монитора FullHD+ Acer B296CL: профессионал ультраширокого профиля Кажется, совсем недавно монитор разрешением Full HD был редкостью на большинстве рабочих столов. Но вот уже всё чаще на прилавках появляются экраны гораздо большего разрешения. При этом набирает популярность новый, свехрширокоэкранный...
  • Обзор монитора LG 29EA93: широкий простор для творчества Возможность получить большое разрешение компьютерной картинки возникла не сегодня и не вчера. Такие технологии, как AMD Eyefinity или NVIDIA nView, позволяют вывести изображение вплоть до 16-ти тысяч на 16 тысяч точек, но при этом...
  • Обзор монитора Samsung S24C770T: красота не требует жертв? Взаимодействие человека и компьютера становится всё более тесным. Клавиатура и мышь отходят на второй план, уступая место новым, естественным формам, одной из которых являются сенсорные экраны. Ставшие привычным элементом дизайна большинства...
  • Samsung S27B970D: больше, чем просто монитор Процесс виртуализации жизни совершается, не замедляясь, и, следовательно, требует все новых решений. На рынке появляется все более мощное визуализационное оборудование, копирующее физический мир с такой достоверностью, что отличить...
  • Обзор самого красивого монитора года Acer S235HL Тайваньская компания Acer, безусловно, является одним из самых ярких и интересных игроков на рынке электроники. Разработчики компании любят попотчевать пользователей необычной, а под час и вовсе странной, продукцией. Достаточно вспомнить...
  • Обзор монитора NEC EX231Wp: инструмент профессионала или продвинутый любитель? По данным социологических исследований, в среднем, современный человек проводит за монитором компьютера от шести до восьми часов. Можно долго рассуждать о вреде такого образа жизни, однако стоит признать, что для большинства людей...

УСТРОЙСТВА ОТОБРАЖЕНИЯ ИНФОРМАЦИИ

Мониторы

К устройствам отображения информации относятся прежде все­го мониторы, а также устройства, ориентированные на решение мультимедийных или презентационных задач: устройства форми­рования объемных (стереоскопических) изображений и проекто­ры.

Монитор является важнейшим устройством отображения ком­пьютерной информации. Типы современных мониторов отлича­ются большим разнообразием. По принципу действия все монито­ры для ПК можно разделить на две большие группы:

· на основе электронно-лучевой трубки (ЭЛТ), называемой ки­нескопом;

· плоскопанельные, выполненные в основном на основе жид­ких кристаллов.

Мониторы на основе ЭЛТ

Мониторы на основе ЭЛТ - наиболее распространенные уст­ройства отображения информации. Используемая в этом типе мо­ниторов технология была разработана много лет назад и первона­чально создавалась в качестве специального инструментария для измерения переменного тока, т.е. для осциллографа.

Конструкция ЭЛТ-монитора представляет собой стеклянную трубку, внутри которой находится вакуум. С фронтальной сторо­ны внутренняя часть стекла трубки покрыта люминофором. В ка­честве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и др. Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами. Для создания изображения в ЭЛТ-мониторе используется электронная пушка, которая испускает поток электронов сквозь металлическую маску или решетку на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точ­ками. Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, т. е. поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение на мониторе. Как правило, в цветном ЭЛТ-мониторе используются три электронные пушки, в отличие от одной пушки, применяемой в монохромных мони­торах.

На пути пучка электронов обычно находятся дополнительные электроды: модулятор, регулирующий интенсивность пучка элек­тронов и связанную с ней яркость изображения; фокусирующий электрод, определяющий размер светового пятна; размещенные на основании ЭЛТ катушки отклоняющей системы, которые из­меняют направление пучка. Любое текстовое или графическое изоб­ражение на экране монитора состоит из множества дискретных точек люминофора, называемых пикселами и представляющих со­бой минимальный элемент изображения-растра.

Формирование растра в мониторе производится с помощью специальных сигналов, поступающих на отклоняющую систему. Под действием этих сигналов производится сканирование луча по поверхности экрана по зигзагообразной траектории от левого верх­него угла до правого нижнего, как показано на рис. 4.1. Ход луча по горизонтали осуществляется сигналом строчной (горизонталь­ной) развертки, а по вертикали - кадровой (вертикальной) раз­вертки. Перевод луча из крайней правой точки строки в крайнюю левую точку следующей строки (обратный ход луча по горизонта­ли) и из крайней правой позиции последней строки экрана в крайнюю левую позицию первой строки (обратный ход луча по вертикали) производится посредством специальных сигналов об­ратного хода. Мониторы такого типа называются растровыми. Элек­тронный луч в этом случае периодически сканирует экран, обра­зуя на нем близко расположенные строки развертки. По мере дви­жения луча по строкам видеосигнал, подаваемый на модулятор, изменяет яркость светового пятна и образует видимое на экране изображение. Разрешающая способность монитора определяется числом элементов изображения, которые он способен воспроизводить по горизонтали и вер­тикали, например, 640x480 или 1024 х 768 пикселов.


В отличие от телевизора, где ви­деосигнал, управляющий яркостью электронного пучка, является ана­логовым, в мониторах ПК исполь­зуются как аналоговые, так и циф­ровые видеосигналы. В связи с этим мониторы для ПК принято разде­лять на аналоговые и цифровые. Пер­выми устройствами отображения информации ПК были цифровые мониторы.

В цифровых мониторах управление осуществляется двоичными сигналами, которые имеют только два значения: логическая 1 и логический 0 («да» и «нет»). Уровню логической единицы соответ­ствует напряжение около 5 В, уровню логического нуля - не бо­лее 0,5 В. Поскольку те же уровни «1» и «0» используются в широ­ко распространенной стандартной серии микросхем на основе транзисторно-транзисторной логики (TTL - Transistor Transistor Logic - транзисторно-транзисторная логика), цифровые монито­ры называют TTL-мониторами.

Первые TTL-мониторы были монохромными, впоследствии появились цветные. В монохромных цифровых мониторах точки на экране могут быть только светлыми или темными, различаясь яр­костью. Электронно-лучевая трубка монохромного монитора име­ет только одну электронную пушку; она меньше цветных ЭЛТ, благодаря чему монохромные мониторы компактнее и легче дру­гих. Кроме того, монохромный монитор работает с более низким анодным напряжением, чем цветной (15 кВ против 21 - 25 кВ), поэтому потребляемая им мощность значительно ниже (30 Вт вме­сто 80 - 90 Вт у цветных).

В кинескопе цветного цифрового монитора содержатся три элек­тронные пушки: для красного (Red), зеленого (Green) и синего (Blue) цветов с раздельным управлением, поэтому его называют RGB-монитором.

Цифровые RGB-мониторы поддерживают и монохромный ре­жим работы с отображением до 16 градаций серого цвета.

Аналоговые мониторы, так же как и цифровые, бывают цвет­ными и монохромными, при этом цветной монитор может рабо­тать в монохромном режиме.

Главная причина перехода к аналоговому видеосигналу со­стоит в ограниченности палитры цветов цифрового монитора. Аналоговый видеосигнал, регулирующий интенсивность пучка электронов, может принимать любое значение в диапазоне от 0 до 0,7 В. Поскольку этих значений бесконечно много, палитра ана­логового монитора неограничена. Однако видеоадаптер может обеспечить только конечное количество градаций уровня видео­сигнала, что в итоге ограничивает палитру всей видеосистемы в целом.

Для понимания принципа формирования растра цветных мони­торов следует представлять механизм цветового зрения. Свет - это электромагнитные колебания в определенном диапазоне длин волн. Человеческий глаз способен различать цвета, соответствую­щие различным областям спектра видимого излучения, который занимает лишь незначительную часть общего спектра электромаг­нитных колебаний в диапазоне длин волн от 0,4 до 0,75 мкм.

Совокупное излучение длин волн всего видимого диапазона воспринимается глазом как белый свет. Глаз человека имеет рецепторы трех типов, ответственные за восприятие цвета и разли­чающиеся своей чувствительностью к электромагнитным колеба­ниям различных длин волн. Одни из них реагируют на фиолетово-синий, другие - на зеленый, третьи - на оранжево-красный цвет. Если на рецепторы свет не попадает, глаз человека воспринимает черный цвет. Если все рецепторы освещаются одинаково, человек видит серый или белый цвет. При освещении объекта часть света отражается от него, а часть поглощается. Плотность цвета опреде­ляется количеством поглощенного объектом света в данном спек­тральном диапазоне. Чем плотнее цветовой слой, тем меньше све­та отражается и, как следствие, более темным получается оттенок цвета (тон).

Физиологические особенности цветового зрения исследовались М. В. Ломоносовым. В основу разработанной им теории цветового зрения положен экспериментально установленный факт, что все цвета могут быть получены путем сложения трех световых потоков с высокой насыщенностью, например, красного, зеленого и си­него, называемых основными или первичными.

Обычно световое излучение возбуждает все рецепторы челове­ческого глаза одновременно. Зрительный аппарат человека анализи­рует свет, определяя в нем относительное содержание различных излучений, а затем в мозгу происходит их синтез в единый цвет.

Благодаря замечательному свойству глаза - трехкомпонент-ности цветного восприятия - человек может различать любой из цветовых оттенков: достаточно информации только о количественном соотношении интенсивностей трех основных цве­тов, поэтому нет необходимости в непосредственной передаче всех цветов. Таким образом, благодаря физиологическим особенностям цветового зрения, значительно сокращается объем информации о цвете и упрощаются многие технологические решения, связан­ные с регистрацией и обработкой цветных изображений.

Еще одним важным свойством цветового зрения является про­странственное усреднение цвета, которое заключает­ся в том, что если на цветном изображении имеются близко рас­положенные цветные детали, то с большого расстояния цвета отдельных деталей неразличимы. Все близко расположенные цвет­ные детали будут выглядеть окрашенными в один цвет. Благодаря этому свойству зрения в электронно-лучевой трубке монитора фор­мируется цвет одного элемента изображения из трех цветов рас­положенных рядом люминофорных зерен.

Указанные свойства цветового зрения использованы при раз­работке принципа действия ЭЛТ цветного монитора. В электрон­но-лучевой трубке цветного монитора расположены три элект­ронные пушки с независимыми схемами управления, а на внут­реннюю поверхность экрана нанесен люминофор трех основных цветов: красного, синего и зеленого.

Рис. 4.2. Схема образования цветов на экране монитора

На рис. 4.2 представлена схема образования цветов на экране монитора. Электронный луч каждой пушки возбуждает точки лю­минофора, и они начинают светиться. Точки светятся по-разному и представляют собой мозаичное изображение с чрезвычайно ма­лыми размерами каждого элемента. Интенсивность свечения каж­дой точки зависит от управляющего сигнала электронной пушки. В человеческом глазу точки с тремя основными цветами пересека­ются и накладываются друг на друга. Изменением соотношения интенсивностей точек трех основных цветов получают требуемый оттенок на экране монитора. Для того чтобы каждая пушка на­правляла поток электронов только на пятна люминофора соот­ветствующего цвета, в каждом цветном кинескопе имеется спе­циальная цветоделительная маска.

В зависимости от расположения электронных пушек и конст­рукции цветоделительной маски (рис. 4.3) различают ЭЛТ четы­рех типов, используемые в современных мониторах:

· ЭЛТ с теневой маской {Shadow Mask) (см. рис. 4.3, а) наибо­лее распространены в большинстве мониторов, производимых LG, Samsung, Viewsonic, Hitachi, Belinea, Panasonic, Daewoo, Nokia;

· ЭЛТ с улучшенной теневой маской (EDP - Enhenced Dot Pitch) (см. рис. 4.3, 6);

· ЭЛТ со щелевой маской (Slot Mask) (см. рис. 4.3, в), в которой люминофорные элементы расположены в вертикальных ячейках, а маска сделана из вертикальных линий. Вертикальные полосы разделены на ячейки, содержащие группы из трех люминофорных элементов трех основных цветов. Этот тип маски применяется фирмами NEC и Panasonic;

· ЭЛТ с апертурной решеткой из вертикальных линий {Aperture Grill) (см. рис. 4.3, г). Вместо точек с люминофорными элемента­ми трех основных цветов апертурная решетка содержит серию нитей, состоящих из люминофорных элементов, выстроенных в виде вертик&тьных полос трех основных цветов. По этой техноло­гии производятся трубки Sony и Mitsubishi.

Конструктивно теневая маска представляет собой металличе­скую пластину из специального материала, инвара, с системой отверстий, соответствующих точкам люминофора, нанесенным на внутреннюю поверхность кинескопа. Температурная стабилизация формы теневой маски при ее бомбардировке электронным пуч­ком обеспечивается малым значением коэффициента линейного расширения инвара. Апертурная решетка образована системой щелей, выполняющих ту же функцию, что и отверстия в теневой маске.

Оба типа трубок (с теневой маской и апертурной решеткой) имеют свои преимущества и области применения. Трубки с тене­вой маской дают более точное и детализированное изображение, поскольку свет проходит через отверстия в маске с четкими кра­ями. Поэтому мониторы с такими ЭЛТ рекомендуется использо­вать при интенсивной и длительной работе с текстами и мелкими элементами графики. Трубки с апертурной решеткой имеют более ажурную маску, они меньше заслоняют экран и позволяют полу­чить более яркое, контрастное изображение в насыщенных цветах. Мониторы с такими трубками хорошо подходят для настольных издательских систем и других приложений, ориентированных на работу с цветными изображениями.

Минимальное расстояние между люминофорными элемента-Ми одинакового цвета в теневых масках называется Dot Pitch (шаг точки) и является индексом качества изображения. Шаг точки обычно измеряется в миллиметрах. Чем меньше значение шага точки, тем выше качество воспроизводимого на мониторе изоб­ражения. Среднее расстояние между точками люминофора назы­вается зерном. У различных моделей мониторов данный пара­метр имеет значение от 0,2 до 0,28 мм. В ЭЛТ с апертурной решет­кой среднее расстояние между полосами называется Strip Pitch (шаг п о л о с ы) и измеряется в миллиметрах. Чем меньше вели­чина шага полосы, тем выше качество изображения на мониторе. Нельзя сравнивать размер шага для трубок разных типов: шаг то­чек (или триад) трубки с теневой маской измеряется по диагона­ли, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, - по горизонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой. Для приме­ра: 0,25 мм шага точки приблизительно эквивалентно 0,27 мм шага полосы.

Помимо электронно-лучевой трубки монитор содержит управ­ляющую электронику, которая обрабатывает сигнал, поступаю­щий напрямую от видеокарты ПК. Эта электроника должна опти­мизировать усиление сигнала и управлять работой электронных пушек.

Выведенное на экран монитора изображение выглядит стабиль­ным, хотя на самом деле таковым не является. Изображение на экране воспроизводится в результате процесса, в ходе которого свечение люминофорных элементов инициируется электронным лучом, проходящим последовательно по строкам. Этот процесс происходит с высокой скоростью, поэтому кажется, что экран светится постоянно. В сетчатке глаза изображение хранится около 1/20 с. Это означает, что если электронный луч будет двигаться по экрану медленно, глаз воспримет это как отдельную движущуюся яркую точку, но когда луч начинает двигаться с высокой скорос­тью, прочерчивая на экране строку 20 раз в секунду, глаз увидит равномерную линию на экране. Если обеспечить последовательное сканирование лучом экрана по горизонтальным линиям сверху вниз за время меньшее 1/25 с, глаз воспримет равномерно осве­щенный экран с небольшим мерцанием. Движение самого луча происходит настолько быстро, что глаз не в состоянии его заме­тить. Считается, что мерцание становится практически незамет­ным при частоте повторения кадров (проходов луча по всем эле­ментам изображения) примерно 75 раз в секунду.

Высвеченные пикселы экрана должны продолжать светиться в течение времени, которое необходимо электронному лучу, чтобы просканировать весь экран и вернуться снова для активизации данного пиксела при прорисовке уже следующего кадра. Следова­тельно, минимальное время послесвечения должно быть не мень­ше периода смены кадров изображения, т.е. 20 мс.

ЭЛТ-мониторы имеют следующие основные характеристики.

Диагональ экрана монитора - расстояние между левым нижним и правым верхним углом экрана, измеряемое в дюймах. Размер видимой пользователю области экрана обычно несколько мень­ше, в среднем на 1", чем размер трубки. Производители могут указывать в сопровождающей документации два размера диагона­ли, при этом видимый размер обычно обозначается в скобках или с пометкой «Viewable size», но иногда указывается только один размер - размер диагонали трубки. В качестве стандарта для ПК выделились мониторы с диагональю 15", что примерно соответ­ствует 36 - 39 см диагонали видимой области. Для работы в Windows желательно иметь монитор размером, по крайней мере, 17". Для профессиональной работы с настольными издательскими систе­мами (НИС) и системами автоматизированного проектирования (САПР) лучше использовать монитор размером 20" или 21".

Размер зерна экрана определяет расстояние между ближайши­ми отверстиями в цветоделительной маске используемого типа. Расстояние между отверстиями маски измеряется в миллиметрах. Чем меньше расстояние между отверстиями в теневой маске и чем больше этих отверстий, тем выше качество изображения. Все мониторы с зерном более 0,28 мм относятся к категории грубых и стоят дешевле. Лучшие мониторы имеют зерно 0,24 мм, достигая 0,2 мм у самых дорогостоящих моделей.

Разрешающая способность монитора определяется количеством элементов изображения, которые он способен воспроизводить по горизонтали и вертикали. Мониторы с диагональю экрана 19"под­держивают разрешение до 1920 х 14400 и выше.

Тип электронно-лучевой трубки следует принимать во внимание при выборе монитора. Наиболее предпочтительны такие типы кинескопов, как Black Trinitron, Black Matrix или Black Planar. Мо­ниторы этих типов имеют особое люминофорное покрытие.

Потребляемая мощность монитора указывается в его техниче­ских характеристиках. У мониторов 14" потребляемая мощность не должна превышать 60 Вт.

Покрытия экрана необходимы для придания ему антибликовых и антистатических свойств. Антибликовое покрытие позво­ляет наблюдать на экране монитора только изображение, форми­руемое компьютером, и не утомлять глаза наблюдением отражен­ных объектов. Существует несколько способов получения анти­бликовой (не отражающей) поверхности. Самый дешевый из них - протравливание. Оно придает поверхности шероховатость. Однако графика на таком экране выглядит нерезко, качество изображе­ния низкое. Наиболее популярен способ нанесения кварцевого покрытия, рассеивающего падающий свет; этот способ реализо­ван фирмами Hitachi и Samsung. Антистатическое покры­тие необходимо для предотвращения прилипания к экрану пыли вследствие накопления статического электричества.

Защитный экран (фильтр) должен быть непременным атрибу­том ЭЛТ-монитора, поскольку медицинские исследования пока­зали, что излучение, содержащее лучи в широком диапазоне (рент­геновское, инфракрасное и радиоизлучение), а также электро­статические поля, сопровождающие работу монитора, могут весьма отрицательно сказываться на здоровье человека.

По технологии изготовления защитные фильтры бывают: се­точные, пленочные и стеклянные. Фильтры могут крепиться к передней стенке монитора, навешиваться на верхний край, встав­ляться в специальный желобок вокруг экрана или надеваться на монитор.

Сеточные фильтры практически не защищают от электромаг­нитного излучения и статического электричества и несколько ухуд­шают контрастность изображения. Однако эти фильтры неплохо ослабляют блики от внешнего освещения, что немаловажно при длительной работе с компьютером.

Пленочные фильтры также не защищают от статического элект­ричества, но значительно повышают контрастность изображения, практически полностью поглощают ультрафиолетовое излучение и снижают уровень рентгеновского излучения. Поляризационные пленочные фильтры, например фирмы Polaroid, способны пово­рачивать плоскость поляризации отраженного света и подавлять возникновение бликов.

Стеклянные фильтры производятся в нескольких модификаци­ях. Простые стеклянные фильтры снимают статический заряд, ослабляют низкочастотные электромагнитные поля, снижают интенсивность ультрафиолетового излучения и повышают кон­трастность изображения. Стеклянные фильтры категории «полная защита» обладают наибольшей совокупностью защитных свойств: практически не дают бликов, повышают контрастность изобра­жения в полтора-два раза, устраняют электростатическое поле и ультрафиолетовое излучение, значительно снижают низкочастот­ное магнитное (менее 1000 Гц) и рентгеновское излучение. Эти фильтры изготавливаются из специального стекла.

Безопасность монитора для человека регламентируется стан­дартами ТСО: ТСО 92, ТСО 95, ТСО 99, предложенными Швед­ской конфедерацией профсоюзов. ТСО 92, выпущенный в 1992 г., определяет параметры электромагнитного излучения, дает опре­деленную гарантию противопожарной безопасности, обеспечива­ет электрическую безопасность и определяет параметры энерго­сбережения. В 1995 г. стандарт существенно расширили (ТСО 95), включив в него требования к эргономике мониторов. В ТСО 99 требования к мониторам еще более ужесточили. В частности, ста­ли жестче требования к излучениям, эргономике, энергосбере­жению, пожаробезопасности. Присутствуют здесь и экологические требования, которые ограничивают наличие в деталях монитора различных опасных веществ и элементов, например тяжелых ме­таллов.

Срок службы монитора в значительной мере зависит от темпе­ратуры его нагрева при работе. Если монитор очень сильно нагре­вается, можно ожидать, что срок его службы будет невелик. Мо­нитор, корпус которого имеет большое число вентиляционных отверстий, соответственно хорошо охлаждается. Хорошее охлаж­дение препятствует быстрому выходу его из строя.

Устройство прибора:

Основным элементом монитора является кинескоп, называемый также электронно-лучевой трубкой. Кинескоп представляет собой герметичную стеклянную трубку из которой удален воздух (вакуум). Один из концов трубки узкий и длинный - это горловина, в которой находится электронная пушка. Другой - широкий и достаточно плоский - это экран. С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором (luminophor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и т.п. Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами (электронами). Между электронной пушкой и экраном находится управляющая система (электромагниты).

Непосредственно на экран с внешней стороны наносятся многослойное антибликовое и антистатическое покрытия, первое из которых минимизирует количество бликов, не ухудшая при этом фокусировку монитора, и уменьшает электромагнитное излучение, а второе - предотвращает накопление электростатического заряда, что обеспечивается напылением специального химического состава.

Принцип действия:

Электронная пушка испускает потоки электронов, траектория которых изменяется благодаря воздействию электромагнитов управляющего устройства и они попадают в заданную часть экрана монитора, вызывая свечение люминофора, нанесенного на этот экран. После отклоняющей системы поток электронов на пути к фронтальной части трубки проходит через модулятор интенсивности и ускоряющую систему, работающие по принципу разности потенциалов. В результате электроны приобретают большую энергию, часть из которой расходуется на свечение люминофора.

Отклоняющая система состоит из нескольких катушек индуктивности, размещенных у горловины кинескопа. С помощью переменного магнитного поля две катушки создают отклонение пучка электронов в горизонтальной плоскости, а другие две - в вертикальной.
Изменение магнитного поля возникает под действием переменного тока, протекающего через катушки и изменяющегося по определенному закону (это, как правило, пилообразное изменение напряжения во времени), при этом катушки придают лучу нужное направление.

Поток электронов на пути к фронтальной части трубки проходит через модулятор интенсивности и ускоряющую систему, работающие по принципу разности потенциалов. В результате электроны приобретают большую энергию, часть из которой расходуется на свечение люминофора.

Электронный луч проходит последовательно по всем точкам экрана слева направо и сверху вниз. Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, т.е. поток электронов заставляет точки люминофора светиться. Эти светящиеся точки формируют изображение, Луч должен двигаться с такой скоростью, чтобы точки не успевали погаснуть.


Время горизонтального перемещения луча от левого до правого края экрана называется периодом горизонтальной развертки. Величина, обратно пропорциональная этому периоду, называется частотой горизонтальной развертки, (названия «частота строчной развертки») и измеряется в килогерцах (кГц).

Вертикальная развертка, или частота кадров. Монитор с электронно-лучевой трубкой обновляет изображение на экране десятки раз в секунду. Это число называется частотой вертикальной развертки, или частотой обновления экрана, и измеряется в герцах (Гц). Практически все современные мониторы мультичастотные, то есть обладают способностью настраиваться на произвольные значения частот синхросигналов из некоторого заданного диапазона, например 30-84 кГц для строчной и 50-120 Гц для кадровой развертки.

Цветное изображение на ЭЛТ – мониторе построено на принципе смешивания основных цветов: красный (Red), зеленый (Green) и синий (Blue). Их комбинации создают бесконечное число цветов. Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов (человеческий глаз не всегда может их различить). Используются три типа разноцветных частиц, чьи цвета соответствуют основным цветам RGB (отсюда и название группы из люминофорных элементов - триады).

У цветного монитора имеются три электронные пушки с отдельными схемами управления, а на поверхность экрана нанесен люминофор трех основных цветов: красный (Red, R), зеленый (Green, G), синий (Blue, B). Четкость изображения на мониторе тем выше, чем меньше размеры точек люминофора на внутренней поверхности экрана. Обычно говорят не о размерах самих точек, а о расстоянии между ними (dot pitch). Этот параметр для различных моделей мониторов может лежать в диапазоне от 0,41 до 0,19 мм. Нормальным уровнем для стандартного монитора считается 0,23-0,26 мм. Заметим, что нельзя напрямую сравнивать размер шага для трубок разных типов: шаг точек (или триад) трубки с теневой маской измеряется по диагонали, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, - по горизонтали.

Конструкция ЭЛТ-монитора

Большинство используемых и выпускаемых ныне мониторов построены на электронно-лучевых трубках (ЭЛТ). В английском языке - Cathode Ray Tube (CRT), дословно - катодно-лучевая трубка. Иногда CRT расшифровывают как Cathode Ray Terminal, что соответствует уже не самой трубке, а устройству, на ней основанному. Электронно-лучевая технология была разработана немецким ученым Фердинандом Брауном в 1897 году и первоначально создавалась в качестве специального инструмента для измерения переменного тока, то есть для осциллографа. Электронно-лучевая трубка, или кинескоп, - самый важный элемент монитора. Кинескоп состоит из герметичной стеклянной колбы, внутри которой находится вакуум. Один из концов колбы узкий и длинный - это горловина. Другой - широкий и достаточно плоский - экран. Внутренняя стеклянная поверхность экрана покрыта люминофором (luminophor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и т. п. Люминофор - это вещество, которое при бомбардировке заряженными частицами испускает свет. Заметим, что иногда люминофор называют фосфором, но это не верно, так как люминофор, используемый в покрытии ЭЛТ, не имеет ничего общего с фосфором. Более того, фосфор светится только в результате взаимодействия с кислородом воздуха при окислении до P2O5, и ссвечение длится очень недолго (кстати, белый фосфор - сильный яд).

Для создания изображения в ЭЛТ-мониторе используется электронная пушка, откуда под действием сильного электростатического поля исходит поток электронов. Сквозь металлическую маску или решетку они попадают на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками. Поток электронов (луч) может отклоняться в вертикальной и горизонтальной плоскости, что обеспечивает последовательное попадание его на все поле экрана. Отклонение луча происходит посредством отклоняющей системы. Отклоняющие системы подразделяются на седловидно-тороидальные и седловидные. Последние предпочтительнее, поскольку итмеют пониженный уровень излучения.

Отклоняющая система состоит из нескольких катушек индуктивности, размещенных у горловины кинескопа. С помощью переменного магнитного поля две катушки создают отклонение пучка электронов в горизонтальной плоскости, а две другие - в вертикальной. Изменение магнитного поля возникает под действием переменного тока, протекающего через катушки и изменяющегося по определенному закону (это, как правило, пилообразное изменение напряжения во времени), при этом катушки придают лучу нужное направление. Сплошные линии - это активный ход луча, пунктир - обратный.

Частота перехода на новую линию называется частотой строчной (или горизонтальной) развертки. Частота перехода из нижнего правого угла в левый верхний называется частотой вертикальной (или кадровой) развертки. Амплитуда импульсов перенапряжения на катушках строчной развертки возрастает с частотой строк, поэтому этот узел оказывается одним из самых напряженных мест конструкции и одним из главных источников помех в широком диапазоне частот. Мощность, потребляемая узлами строчной развертки, также является одним из серьезных факторов, учитываемых при проектировании мониторов. После отклоняющей системы поток электронов на пути к фронтальной части трубки проходит через модулятор интенсивности и ускоряющую систему, работающие по принципу разности потенциалов. В результате электроны приобретают большую энергию (E=mV2/2, где E-энергия, m-масса, v-скорость), часть из которой расходуется на свечение люминофора.

Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, то есть поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение, которое вы видите на вашем мониторе. Как правило, в цветном CRT мониторе используется три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах, которые сейчас практически не производятся.

Известно, что глаза человека реагируют на основные цвета: красный (Red), зеленый (Green) и синий (Blue) и на их комбинации, которые создают бесконечное число цветов. Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов (настолько маленьких, что человеческий глаз не всегда может различить их). Эти люминофорные элементы воспроизводят основные цвета, фактически имеются три типа разноцветных частиц, чьи цвета соответствуют основным цветам RGB (отсюда и название группы из люминофорных элементов - триады).

Люминофор начинает светиться, как было сказано выше, под воздействием ускоренных электронов, которые создаются тремя электронными пушками. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные люминофорные частицы, чье свечение основными цветами с различной интенсивностью комбинируется и в результате формируется изображение с требуемым цветом. Например, если активировать красную, зеленую и синюю люминофорные частицы, то их комбинация сформирует белый цвет.

Для управления электронно-лучевой трубкой необходима и управляющая электроника, качество которой во многом определяет и качество монитора. Кстати, именно различие в качестве управляющей электроники, создаваемой разными производителями, является одним из критериев определяющих разницу между мониторами с одинаковой электронно-лучевой трубкой.

Итак, каждая пушка излучает электронный луч (или поток, или пучок), который влияет на люминофорные элементы разного цвета (зеленого, красного или синего). Понятно, что электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета. Чтобы добиться такого действия используется специальная маска, чья структура зависит от типа кинескопов от разных производителей, обеспечивающая дискретность (растровость) изображения. ЭЛТ можно разбить на два класса - трехлучевые с дельтаобразным расположением электронных пушек и с планарным расположением электронных пушек. В этих трубках применяются щелевые и теневые маски, хотя правильнее сказать, что они все теневые. При этом трубки с планарным расположением электронных пушек еще называют кинескопами с самосведением лучей, так как воздействие магнитного поля Земли на три планарно расположенных луча практически одинаково и при изменении положения трубки относительно поля Земли не требуется производить дополнительные регулировки.

Типы ЭЛТ

В зависимости от расположения электронных пушек и конструкции цветоделительной маски различают ЭЛТ четырех типов, используемые в современных мониторах:

ЭЛТ с теневой маской(Shadow Mask)

ЭЛТ с теневой маской (Shadow Mask) наиболее распространены в большинстве мониторов, производимых LG, Samsung, Viewsonic, Hitachi, Belinea, Panasonic, Daewoo, Nokia. Теневая маска (shadow mask) - самый распространенный тип масок. Она применяется со времени изобретения первых цветных кинескопов. Поверхность у кинескопов с теневой маской обычно сферической формы (выпуклая). Это сделано для того, чтобы электронный луч в центре экрана и по краям имел одинаковую толщину.

Теневая маска состоит из металлической пластины с круглыми отверстиями, которые занимают примерно 25% площади. Находится маска перед стеклянной трубкой с люминофорным слоем. Как правило, большинство современных теневых масок изготавливают из инвара. Инвар (InVar) - магнитный сплав железа (64%) с никелем (36%). Этот материал имеет предельно низкий коэффициэнт теплового расширения, поэтому, несмотря на то, что электронные лучи нагревают маску, она не оказывает отрицательного влияния на чистоту цвета изображения. Отверстия в металлической сетке работают как прицел (хотя и не точный), именно этим обеспечивается то, что электронный луч попадает только на требуемые люминофорные элементы и только в определенных областях. Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофорных элементов основных цветов - зеленного, красного и синего, которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.

Одним из слабых мест мониторов с теневой маской является ее термическая деформация. На рисунке ниже, как часть лучей от электронно-лучевой пушки попадает на теневую маску, вследствие чего происходит нагрев и последующая деформация теневой маски. Происходящее смещение отверстий теневой маски приводит к возникновению эффекта пестроты экрана (смещения цветов RGB). Существенное влияние на качество монитора оказывает материал теневой маски. Предпочтительным материалом маски является инвар.

Недостатки теневой маски хорошо известны: во-первых, это малое соотношение пропускаемых и задерживаемых маской электронов (только около 20-30% проходит через маску), что требует применения люминофоров с большой светоотдачей, а это в свою очередь ухудшает монохромность свечения, уменьшая диапазон цветопередачи, а во-вторых, обеспечить точное совпадение трех не лежащих в одной плоскости лучей при отклонении их на большие углы довольно трудно. Теневая маска применяется в большинстве современных мониторов - Hitachi, Panasonic, Samsung, Daewoo, LG, Nokia, ViewSonic.

Минимальное расстояние между люминофорными элементами одинакового цвета в соседних строках называется шагом точек (dot pitch) и является индексом качества изображения. Шаг точек обычно измеряется в миллиметрах (мм). Чем меньше значение шага точек, тем выше качество воспроизводимого на мониторе изображения. Расстояние между двумя соседними точками по горизонтали равно шагу точек, умноженному на 0,866.

ЭЛТ с апертурной решеткой из вертикальных линий(Aperture Grill)

Есть еще один вид трубок, в которых используется Aperture Grille (апертурная решетка). Эти трубки стали известны под именем Trinitron и впервые были представлены на рынке компанией Sony в 1982 году. В трубках с апертурной решеткой применяется оригинальная технология, где имеется три лучевые пушки, три катода и три модулятора, но при этом имеется одна общая фокусировка.

Апертурная решетка - это тип маски, используемый разными производителями в своих технологиях для производства кинескопов, носящих разные названия, но одинаковые по сути, например, технология Trinitron от Sony, DiamondTron от Mitsubishi и SonicTron от ViewSonic. Это решение не включает в себя металлическую решетку с отверстиями, как в случае с теневой маской, а имеет решетку из вертикальных линий. Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов, что вместе обеспечивает высокое качество мониторов с трубками на основе этой технологии. Маска, применяемая в трубках фирмы Sony (Mitsubishi, ViewSonic), представляет собой тонкую фольгу, на которой процарапаны тонкие вертикальные линии. Она держится на горизонтальной (одной в 15", двух в 17", трех и более в 21") проволочке, тень от которой видна на экране. Эта проволочка применяется для гашения колебаний и называется damper wire. Ее хорошо видно, особенно при светлом фоне изображения на мониторе. Некоторым пользователям эти линии принципиально не нравятся, другие же наоборот довольны и используют их в качестве горизонтальной линейки.

Минимальное расстояние между полосами люминофора одинакового цвета называется шагом полос (strip pitch) и измеряется в миллиметрах (см. рис. 10). Чем меньше значение шага полос, тем выше качество изображения на мониторе. При апертурной решетке имеет смысл только горизонтальный размер точки. Так как вертикальный определяется фокусировкой электронного луча и отклоняющей системой.

ЭЛТ со щелевой маской(Slot Mask)

Щелевая маска (slot mask) широко применяется компанией NEC под именем «CromaClear». Это решение на практике представляет собой комбинацию теневой маски и апертурной решетки. В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий. Фактически вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов.

Щелевая маска используется, помимо мониторов от NEC (где ячейки эллиптические), в мониторах Panasonic с трубкой PureFlat (ранее называвшейся PanaFlat). Заметим, что нельзя напрямую сравнивать размер шага для трубок разных типов: шаг точек (или триад) трубки с теневой маской измеряется по диагонали, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, - по горизонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой. Для примера, шаг полос 0.25 мм приблизительно эквивалентен шагу точек, равному 0.27 мм. Также в 1997 году компанией Hitachi - крупнейшим проектировщиком и изготовителем ЭЛТ - была разработана EDP - новейшая технология теневой маски. В типичной теневой маске триады размещены более или менее равносторонне, создавая треугольные группы, которые распределены равномерно поперек внутренней поверхности трубки. Компания Hitachi уменьшила расстояние между элементами триады по горизонтали, тем самым, создав триады, более близкие по форме к равнобедренному треугольнику. Для избежания промежутков между триадами сами точки были удлинены, и представляют собой скорее овалы, чем круг.

Оба типа масок - теневая маска и апертурная решетка - имеют свои преимущества и своих сторонников. Для офисных приложений, текстовых редакторов и электронных таблиц больше подходят кинескопы с теневой маской, обеспечивающие очень высокую четкость и достаточный контраст изображения. Для работы с пакетами растровой и векторной графики традиционно рекомендуются трубки с апертурной решеткой, которым свойственны превосходная яркость и контрастность изображения. Кроме того, рабочая поверхность этих кинескопов представляет собой сегмент цилиндра с большим радиусом кривизны по горизонтали (в отличие от ЭЛТ с теневой маской, имеющих сферическую поверхность экрана), что существенно (до 50%) снижает интенсивность бликов на экране.

Основные характеристики ЭЛТ-мониторов

Диагональ экрана монитора

Диагональ экрана монитора – расстояние между левым нижним и правым верхним углом экрана, измеряемое в дюймах. Размер видимой пользователю области экрана обычно несколько меньше, в среднем на 1", чем размер трубки. Производители могут указывать в сопровождающей документации два размера диагонали, при этом видимый размер обычно обозначается в скобках или с пометкой «Viewable size», но иногда указывается только один размер - размер диагонали трубки. В качестве стандарта для ПК выделились мониторы с диагональю 15", что примерно соответствует 36-39 см диагонали видимой области. Для работы в Windows желательно иметь монитор размером, по крайней мере, 17". Для профессиональной работы с настольными издательскими системами (НИС) и системами автоматизированного проектирования (САПР) лучше использовать монитор размером 20" или 21.".

Размер зерна экрана

Размер зерна экрана определяет расстояние между ближайшими отверстиями в цветоделительной маске используемого типа. Расстояние между отверстиями маски измеряется в миллиметрах. Чем меньше расстояние между отверстиями в теневой маске и чем больше этих отверстий, тем выше качество изображения. Все мониторы с зерном более 0,28 мм относятся к категории грубых и стоят дешевле. Лучшие мониторы имеют зерно 0,24 мм, достигая 0,2 мм у самых дорогостоящих моделей.

Разрешающая способность монитора

Разрешающая способность монитора определяется количеством элементов изображения, которые он способен воспроизводить по горизонтали и вертикали. Мониторы с диагональю экрана 19" поддерживают разрешение до 1920* 14400 и выше.

Потребляемая мощность монитора

Покрытия экрана

Покрытия экрана необходимы для придания ему антибликовых и антистатических свойств. Антибликовое покрытие позволяет наблюдать на экране монитора только изображение, формируемое компьютером, и не утомлять глаза наблюдением отраженных объектов. Существует несколько способов получения антибликовой (не отражающей) поверхности. Самый дешевый из них - протравливание. Оно придает поверхности шероховатость. Однако графика на таком экране выглядит нерезко, качество изображения низкое. Наиболее популярен способ нанесения кварцевого покрытия, рассеивающего падающий свет; этот способ реализован фирмами Hitachi и Samsung. Антистатическое покрытие необходимо для предотвращения прилипания к экрану пыли вследствие накопления статического электричества.

Защитный экран (фильтр)

Защитный экран (фильтр) должен быть непременным атрибутом ЭЛТ-монитора, поскольку медицинские исследования показали, что излучение, содержащее лучи в широком диапазоне (рентгеновское, инфракрасное и радиоизлучение), а также электростатические поля, сопровождающие работу монитора, могут весьма отрицательно сказываться на здоровье человека.

По технологии изготовления защитные фильтры бывают: сеточные, пленочные и стеклянные. Фильтры могут крепиться к передней стенке монитора, навешиваться на верхний край, вставляться в специальный желобок вокруг экрана или надеваться на монитор.

Сеточные фильтры

Сеточные фильтры практически не защищают от электромагнитного излучения и статического электричества и несколько ухудшают контрастность изображения. Однако эти фильтры неплохо ослабляют блики от внешнего освещения, что немаловажно при длительной работе с компьютером.

Пленочные фильтры

Пленочные фильтры также не защищают от статического электричества, но значительно повышают контрастность изображения, практически полностью поглощают ультрафиолетовое излучение и снижают уровень рентгеновского излучения. Поляризационные пленочные фильтры, например фирмы Polaroid, способны поворачивать плоскость поляризации отраженного света и подавлять возникновение бликов.

Стеклянные фильтры

Стеклянные фильтры производятся в нескольких модификациях. Простые стеклянные фильтры снимают статический заряд, ослабляют низкочастотные электромагнитные поля, снижают интенсивность ультрафиолетового излучения и повышают контрастность изображения. Стеклянные фильтры категории «полная защита» обладают наибольшей совокупностью защитных свойств: практически не дают бликов, повышают контрастность изображения в полтора-два раза, устраняют электростатическое поле и ультрафиолетовое излучение, значительно снижают низкочастотное магнитное (менее 1000 Гц) и рентгеновское излучение. Эти фильтры изготавливаются из специального стекла.

Плюсы и минусы

Условные обозначения: (+) достоинство, (~) допустимо, (-) недостаток

ЖК-мониторы

ЭЛТ-мониторы

Яркость (+) от 170 до 250 Кд/м2 (~) от 80 до 120 Кд/м2
Контрастность (~) от 200:1 до 400:1 (+) от 350:1 до 700:1
Угол обзора (по контрасту) (~) от 110 до 170 градусов (+) свыше 150 градусов
Угол обзора (по цвету) (-) от 50 до 125 градусов (~) свыше 120 градусов
Разрешение (-) Одно разрешение с фиксированным размером пикселей. Оптимально можно использовать только в этом разрешении; в зависимости от поддерживаемых функций расширения или компрессии можно ис-пользовать более высокое или более низ-кое разрешение, но они не оптимальны. (+) Поддерживаются различные разреше-ния. При всех поддерживаемых разреше-ниях монитор можно использовать опти-мальным образом. Ограничение наклады-вается только приемлемостью частоты регенерации.
Частота вертикальной развертки (+) Оптимальная частота 60 Гц, чего дос-таточно для отсутствия мерцания (~) Только при частотах свыше 75 Гц от-сутствует явно заметное мерцание
Ошибки совмещения цветов (+) нет (~) от 0.0079 до 0.0118 дюйма (0.20 - 0.30 мм)
Фокусировка (+) очень хорошая (~) от удовлетворительной до очень хоро-шей>
Геометрические/линейные искажения (+) нет (~) возможны
Неработающие пиксе-ли (-) до 8 (+) нет
Входной сигнал (+) аналоговый или цифровой (~) только аналоговый
Масштабирование при разных разрешениях (-) отсутствует или используются методы интерполяции, не требующие больших накладных расходов (+) очень хорошее
Точность отображения цвета (~) Поддерживается True Color и имитиру-ется требуемая цветовая температура (+) Поддерживается True Color и при этом на рынке имеется масса устройств калиб-ровки цвета, что является несомненным плюсом
Гамма-коррекция (подстройка цвета под особенности человече-ского зрения) (~) удовлетворительная (+) фотореалистичная
Однородность (~) часто изображение ярче по краям (~) часто изображение ярче в центре
Чистота цвета/качество цвета (~) хорошее (+) высокое
Мерцание (+) нет (~) незаметно на частоте выше 85 Гц
Время инерции (-) от 20 до 30 мсек. (+) пренебрежительно мало
Формирование изображения (+) Изображение формируется пикселями, число которых зависят только от конкретного разрешения LCD панели. Шаг пикселей зависит только от размера самих пикселей, но не от расстояния между ними. Каждый пиксель формируется индивидуально, что обеспечивает великолепную фокусировку, ясность и четкость. Изображение получается более целостным и гладким (~) Пиксели формируются группой точек (триады) или полосок. Шаг точки или ли-нии зависит от расстояния между точками или линиями одного цвета. В результате четкость и ясность изображения сильно зависит от размера шага точки или шага линии и от качества ЭЛТ
Энергопотребление и излучения (+) Практически никаких опасных электромагнитных излучений нет. Уровень потребления энергии примерно на 70% ниже, чем у стандартных CRT мониторов (от 25 до 40 Вт). (-) Всегда присутствует электромагнитное излучение, однако их уровень зависит от того, соответствует ли ЭЛТ какому-либо стандарту безопасности. Потребление энергии в рабочем состоянии на уровне 60 - 150 Вт.
Размеры/вес (+) плоский дизайн, малый вес (-) тяжелая конструкция, занимает много места
Интерфейс монитора (+) Цифровой интерфейс, однако, большинство LCD мониторов имеют встроенный аналоговый интерфейс для подключения к наиболее распространенным аналоговым выходам видеоадаптеров (-) Аналоговый интерфейс